

KUBERNETES

QUICK START

GUIDE

ABSTRACT
Kubernetes is an open-source system for automating
deployment, scaling, and management of
containerized applications. Topics covered in this
ebook would give you quick start on basic concepts.
To get the most of out of this, learners should have
basic proficiency with command-line tools and Linux
operating system environments, as well as Web server
technologies such as Nginx. Also its recommend that
you have systems operations experience, including
deploying and managing applications, either on-
premises or in a public cloud environment.

Shanmugam Karthikeyan
Upnxtblog.com

Kubernetes Quick Start Guide

 www.upnxtblog.com

1

Contents
Introduction to Containers .. 3

Kubernetes Introduction ... 7

Kubernetes Architecture – System & Abstractions ... 8

Create new Kubernetes cluster .. 12

Step #1. Minikube installation ... 12

Step #2.kubectl installation. ... 13

Step #3. Create local cluster .. 16

Step #4 : Deploy ngnix app to one of the nodes of the cluster .. 18

Step #5 : Expose ngnix app outside of the cluster... 20

Step #6 : Delete app .. 21

Scale & perform updates to the app on the cluster .. 22

Step #1. Check the list of application deployment .. 22

Step #2. Scale up/down application deployment ... 23

Step #3. Perform rolling updates to application deployment.. 24

Step #4. Rollback updates to application deployment .. 27

Step #5. Cleanup .. 28

Create application deployment using yaml file .. 29

Step #1.Create an nginx deployment ... 29

Step #2.Create Deployment based on the YAML file .. 30

Step #3.Create service ... 32

Step #4.Deploy service .. 32

Step #5.Update nginx deployment to have 4 replicas ... 34

Step #6.Apply the updated nginx deployment to have 4 replicas ... 34

Running Kubernetes on Microsoft Azure ... 37

Step#1.Launch Azure Cloud Shell ... 37

Step#2.Enable AKS Preview .. 38

Step#3.Resource group creation .. 39

Step#4.Kubernetes cluster creation ... 40

Step#5.Connect to Kubernetes cluster ... 41

Kubernetes Quick Start Guide

 www.upnxtblog.com

2

Step#6. Deploy new application on the cluster ... 42

Step#7. Create service ... 44

Step#8. Clean up .. 47

Kubless – Kubernetes Native Serverless Framework .. 48

How it works ... 49

Kubeless Installation .. 50

Deploy Function .. 51

Call Function via HTTP ... 53

Resources .. 56

Kubernetes Quick Start Guide

 www.upnxtblog.com

3

Introduction to Containers

Linux containers has been around since the early 2000s and architected into Linux
in 2007. Due to small footprint and portability of containers, the same hardware can
support an exponentially larger number of containers than VMs, dramatically
reducing infrastructure costs and enabling more apps to deploy faster.But due to
usability issues,it din’t kickoff enough interest until Docker (2013) came into
picture.To name a few prominent container platforms now
– Docker,Kubernetes,Cloud Foundry etc.,

Image – Mesosphere

1. Linux containers, contain applications in isolated fashion to keep them
isolated from the host (OS) system that they run on.

2. Containers allow a developer to package up an application with all of the
artifacts it needs, such as libraries and other dependencies, and ship it all out
as one package.

3. It provide a consistent experience as developers and system administrators
move code from development environments into production in a fast and
replicable way.

Kubernetes Quick Start Guide

 www.upnxtblog.com

4

4. Containers don’t need to replicate an entire operating system, only the
individual components they need in order to operate. This gives a significant
performance boost and reduces the size of the application. They also operate
much faster, as unlike traditional virtualization the process is essentially
running natively on its host.

5.
Image – LXC

6. Containers have also sparked an interest in microservice architecture, a
design pattern for developing applications in which complex applications are
broken down into smaller, composable services which work together. Each
component is developed separately, and the application is then simply the
sum of its constituent components. Each service, can live inside of a
container, and can be scaled independently of the rest of the application as
the need arises.

7. A bit about Docker platform : Its a utility designed to make it easier to create,
deploy, and run applications by using containers. It is designed to benefit
both developers and system administrators, making it a part of many DevOps
(developers + operations) toolchains(set of distinct software development
tools that are linked). For developers, it means that they can focus on writing
code without worrying about the system that it will be running on.Containers

Kubernetes Quick Start Guide

 www.upnxtblog.com

5

allow a developer to package up an application with all of the artifacts it
needs, such as libraries and other dependencies, and ship it all out as one
package.The developer can be rest assured that the application will run on
any other Linux machine regardless of any customized settings that machine
might have that could differ from the machine used for writing and testing
the code.For operations staff, Docker gives flexibility and potentially reduces
the number of systems needed because of its small footprint and lower
overhead.

8. Docker is different from standard virtualization,it is operating system level
virtualization. Unlike hypervisor virtualization, where virtual machines run on
physical hardware via an intermediation layer (hypervisor), containers
instead run user space on top of an operating system’s kernel. That makes
them very lightweight and fast.

9. Benefits of Containers :

1. Isolating applications and operating systems through containers.

2. Providing nearly native performance as container manages allocation of
resources in real-time.

3. Controlling network interfaces and applying resources inside containers.

10. Limitations of containers

1. All Containers are running inside the host system’s Kernel and not with a
different Kernel.

2. Only allows Linux “guest” operating systems.

3. Container is not a full virtualization stack like Xen, KVM, or libvirt.

4. Security depends on the host system hence containers are not secure.

11. Risks due to containers

1. Container breakout : If any one of the container breaks out,it can allow
unauthorized access across containers, hosts or data centers etc., thus
affecting all the containers hosted on the Host OS.

Kubernetes Quick Start Guide

 www.upnxtblog.com

6

2. There could DDOS and cross-site scripting attacks on public facing
containers hosted applications.

3. A container being forced to use up system resources in an attempt to
slow or crash other containers.

4. If any of the compromised containers attempting to download additional
malware, or scan internal systems for weaknesses or sensitive data,this
can affect all the hosted containers.

5. Use of unsecure applications to flood the network and affect other
container.

Kubernetes Quick Start Guide

 www.upnxtblog.com

7

Now we know what containers are & why do we need them, also note deploying
lots of containers does require sophisticated management, though. Luckily, there
is a solution that simplifies this, it is Kubernetes. let’s see what it has to offer.

Kubernetes Introduction
The name Kubernetes originates from Greek, it means helmsman or pilot, and is
the root of governor and cybernetic. K8s is an abbreviation derived by replacing
the 8 letters “ubernete” with “8”.Kubernetes has been built based upon 15 years
of experience of running production workloads at Google, combined with best-
of-breed ideas and practices from the community.It groups containers that make
up an application into logical units for easy management and discovery

Kubernetes is a production-ready, open source platform designed with Google’s
accumulated experience in container orchestration, combined with best-of-
breed ideas from the community. It is designed to automate deploying, scaling,
and operating application containers.

Image – Kubernetes

Kubernetes coordinates a highly available cluster of computers that are
connected to work as a single unit. The abstractions in Kubernetes allow you to

Kubernetes Quick Start Guide

 www.upnxtblog.com

8

deploy containerized applications to a cluster without tying them specifically to
individual machines.

In short,Kubernetes is

 Portable: public, private, hybrid, multi-cloud

 Extensible: modular, pluggable, hookable, composable

 Self-healing: auto-placement, auto-restart, auto-replication, auto-scaling

Kubernetes Architecture – System &
Abstractions
Following would help you to learn about the different parts of the Kubernetes
system and the abstractions. Kubernetes automates the entire distribution and
scheduling of application containers across a cluster in a more efficient way.

1. To interact with Kubernetes, there is an API layer (Kubernetes API) exposed
same can be interacted using command-line interface via kubectl

2. Any Kubernetes cluster (example below) would have two types of resources:

1. Master which controls the cluster

2. Node are the workers nodes that runs applications

Kubernetes Quick Start Guide

 www.upnxtblog.com

9

Image – Kubernetes cluster

3. The Master coordinates all activities in your cluster, such as scheduling
applications, maintaining applications’ desired state, scaling applications, and
rolling out new updates.

4. Each Mode can be a VM or a physical computer that serves as a worker
machine in a cluster.Each node has a Kubelet, which is an agent for managing
the node and communicating with the Kubernetes master. The node should
also have tools for handling container operations, such as Docker or rkt.

5. When any applications needs to be deployed on Kubernetes, master issues
command to start the application containers. The master schedules the
containers to run on the cluster’s nodes.

6. The nodes communicate with the master using the Kubernetes API, which
the master exposes. End users can also use the Kubernetes API directly to
interact with the cluster.

Kubernetes Quick Start Guide

 www.upnxtblog.com

10

Image – Kubernetes Abstractions

Master components provide the cluster’s control plane. Kubernetes Control
Planeconsists of a collection of below processes on your cluster:

 Kubernetes Master collection of three processes kube-apiserver, kube-
controller-manager and kube-scheduler.

 kube-apiserver exposes the Kubernetes API. It is the front-end for the
Kubernetes control plane.

 kube-controller-manager runs controllers, which are the designed to
handle routine tasks in the cluster.

 Each individual non-master node on the cluster runs two processes:

 kubelet – this is to communicate with Kubernetes Master

 kube-proxy – this is nothing but network proxy (Kubernetes networking
services) on each node.

 kube-scheduler is to keep watch for newly created pods that have no
node assigned, and selects a node for them to run on.

Master components make global decisions about the cluster (like for example,
scheduling applications), and detecting and responding to cluster events.

Kubernetes Quick Start Guide

 www.upnxtblog.com

11

Apart from the above,there are other objects to represent the state of
system,some of the basic Kubernetes objects include:

 Pod

 Service

 Volume

 Namespace

 Controllers

Kubernetes cluster can run on various platforms: from your laptop, to VMs on a
cloud provider, to a rack of bare metal servers. To try with local Kubernetes setup,
you can use Minikube. Minikube is a lightweight Kubernetes implementation that
creates a VM on your local machine and deploys a simple cluster containing only
one node.Minikube is available for Linux, macOS, and Windows systems. The
Minikube CLI provides basic bootstrapping operations for working with your
cluster, including start, stop, status, and delete.

There is also web-based Dashboard for Kubernetes clusters. It allows users to
manage and troubleshoot applications running in the cluster, as well as the
cluster itself.

Kubernetes Quick Start Guide

 www.upnxtblog.com

12

Create new Kubernetes cluster

We have looked at the Introduction & key concepts of Kubernetes platform.Now
in this chapter,we are going to Create new Kubernetes cluster using Minikube.
Minikube is a lightweight Kubernetes implementation that creates a VM on your
local machine and deploys a simple cluster containing only one node. Minikube
is available for Linux, macOS, and Windows systems.

The Minikube CLI provides basic bootstrapping operations for working with your
cluster, including start, stop, status, and delete.Also we are going to
use kubectl utility to deploy and manage applications on Kubernetes. Also,you
can inspect cluster resources; create, delete, and update components; and look
at new cluster.

Here are the detailed steps:

Step #1. Minikube installation
Download the latest release with the command.This is for linux,if you’re using
other OS,please refer above link.

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/minikube-
linux-amd64 && chmod +x minikube && sudo mv minikube /usr/local/bin/

Image – Minikube installation

Check the download by running the minikube version command:

Kubernetes Quick Start Guide

 www.upnxtblog.com

13

Image – Check Minikube version

To check what are the available commands,try minikube from the terminal

$ minikube
Minikube is a CLI tool that provisions and manages single-node Kubernetes clusters
optimized
 for development workflows.

Usage:
 minikube [command]

Available Commands:
start Starts a local kubernetes cluster.
stop Stops a running local kubernetes cluster.
version Print the version of minikube.

Step #2.kubectl installation.
Download the latest release with the command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s
https://storage.googleapis.com/kubernetes-
release/release/stable.txt)/bin/linux/amd64/kubectl

Kubernetes Quick Start Guide

 www.upnxtblog.com

14

Image – kubectl Installation

 Make the kubectl binary executable.

chmod +x ./kubectl

Move the binary in to your PATH.

sudo mv ./kubectl /usr/local/bin/kubectl

To check what are the available kubectl commands,run kubectl from the terminal

$ kubectl
kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/kubernetes/kubernetes.

Basic Commands (Beginner):
 create Create a resource from a file or from stdin.
 expose Take a replication controller, service, deployment or pod and
expose it as a new Kubernetes Service
 run Run a particular image on the cluster
 set Set specific features on objects
 run-container Run a particular image on the cluster. This command is
deprecated, use "run" instead

Kubernetes Quick Start Guide

 www.upnxtblog.com

15

Basic Commands (Intermediate):
 get Display one or many resources
 explain Documentation of resources
 edit Edit a resource on the server
 delete Delete resources by filenames, stdin, resources and names, or
by resources and label selector

Deploy Commands:
 rollout Manage the rollout of a resource
 rolling-update Perform a rolling update of the given ReplicationController
 scale Set a new size for a Deployment, ReplicaSet, Replication
Controller, or Job
 autoscale Auto-scale a Deployment, ReplicaSet, or ReplicationController

Cluster Management Commands:
 certificate Modify certificate resources.
 cluster-info Display cluster info
 top Display Resource (CPU/Memory/Storage) usage.
 cordon Mark node as unschedulable
 uncordon Mark node as schedulable
 drain Drain node in preparation for maintenance
 taint Update the taints on one or more nodes

Troubleshooting and Debugging Commands:
 describe Show details of a specific resource or group of resources
 logs Print the logs for a container in a pod
 attach Attach to a running container
 exec Execute a command in a container
 port-forward Forward one or more local ports to a pod
 proxy Run a proxy to the Kubernetes API server
 cp Copy files and directories to and from containers.
 auth Inspect authorization

Advanced Commands:

Kubernetes Quick Start Guide

 www.upnxtblog.com

16

 apply Apply a configuration to a resource by filename or stdin
 patch Update field(s) of a resource using strategic merge patch
 replace Replace a resource by filename or stdin
 convert Convert config files between different API versions

Settings Commands:
 label Update the labels on a resource
 annotate Update the annotations on a resource
 completion Output shell completion code for the specified shell (bash or
zsh)

Other Commands:
 api-versions Print the supported API versions on the server, in the form of
"group/version"
 config Modify kubeconfig files
 help Help about any command
 plugin Runs a command-line plugin
 version Print the client and server version information

Use "kubectl --help" for more information about a given command.
Use "kubectl options" for a list of global command-line options (applies to all
commands).

Step #3. Create local cluster
Start the cluster, by running the minikube start command:

Image – Starting local cluster

Once the cluster is started,we have a running Kubernetes local cluster
now.Minikube has started a virtual machine for you, and a Kubernetes cluster is
now running in that VM.

Kubernetes Quick Start Guide

 www.upnxtblog.com

17

To interact with Kubernetes we’ll use the command line interface, kubectl. To
check if kubectl is installed you can run the kubectl version command:

Image – kubectl version command

As you can see kubectl is configured and we can see that both the version of the
client and as well as the server. The client version is the kubectl version; the server
version is the Kubernetes version installed on the master. You can also see details
about the build.

To view the cluster details, run kubectl cluster-info:

Image – kubectl cluster-info

To view the nodes in the cluster, run the kubectl get nodes command:

Kubernetes Quick Start Guide

 www.upnxtblog.com

18

Image – kubectl get nodes command

Step #4 : Deploy ngnix app to one of the nodes of
the cluster
Let’s run our first app on Kubernetes with the kubectl run command.
The run command creates a new deployment. We need to provide the
deployment name and app image location (include the full repository url for
images hosted outside Docker hub) ,currently I have provided ngnix image. If we
want to run the app on a specific port so we could add the –port parameter as
well.

Image – Kubernets deployment created

Congrats! We have just deployed first application by creating a
deployment. Following is what the command has done for us:

1. Searched for a suitable node where an instance of the application could be
run (we have only 1 available node)

2. Scheduled the ngnix application to run on that Node

3. Configured the cluster to reschedule the instance on a new Node when
needed

Kubernetes Quick Start Guide

 www.upnxtblog.com

19

Image – kubectl get pods

Once the application instances are created, a Kubernetes Deployment Controller
continuously monitors those instances. If the Node hosting an instance goes
down or is deleted, the Deployment controller replaces it.

A Pod is a Kubernetes abstraction that represents a group of one or more
application containers (such as Docker or rkt), and some shared resources for
those containers. Those resources include:

 Shared storage, as Volumes

 Networking, as a unique cluster IP address

 Information about how to run each container, such as the container image
version or specific ports to use

A Pod always runs on a Node. As discussed earlier,Node is a nothing but a worker
machine in Kubernetes and may be either a virtual or a physical machine,
depending on the cluster. Each Node is managed by the Master. A Node can have
multiple pods, and the Kubernetes master automatically handles scheduling the
pods across the Nodes in the cluster. The Master’s automatic scheduling takes
into account the available resources on each Node.

Every Kubernetes Node runs at least:

 Kubelet – responsible for communication between the Kubernetes Master
and the Nodes

 Container runtime (like Docker, rkt)

For example, a Pod might include both the container with your ngnix app as well
as a different container that feeds the data to be published by the ngnix

Kubernetes Quick Start Guide

 www.upnxtblog.com

20

webserver. The containers in a Pod share an IP Address and port space, are always
co-located and co-scheduled, and run in a shared context on the same Node.

To list your deployments, use the get deployments command:

Image – kubectl get deployments command

Here we can see that there is 1 deployment running a single instance of the app.

Some of the useful kubectl commands are below.

 kubectl get – list resources

 kubectl describe – show detailed information about a resource

 kubectl logs – print the logs from a container in a pod

 kubectl exec – execute a command on a container in a pod

Step #5 : Expose ngnix app outside of the cluster
To expose the app on to the outside world, use expose deployment command:

Image – kubectl expose deployment command

Pods that are running inside Kubernetes are running on a private, isolated
network. By default they are visible from other pods and services within the same
kubernetes cluster, but not outside that network. On some platforms (for
example Google Compute Engine) the kubectl command can integrate with your
cloud provider to add a public IP address for the pods, to do this run:

To see the ngnix landing page,you can check at the http://localhost:80

Kubernetes Quick Start Guide

 www.upnxtblog.com

21

Also note in order to access your nginx landing page, you also have to make sure
that traffic from external IPs is allowed. Do this by opening a firewall to allow
traffic on port 80.

kubectl get services

This should print the service that has been created, and map an external IP
address to the service. Where to find this external IP address will depend on the
environment you run in. For instance, for Google Compute Engine the external IP
address is listed as part of the newly created service and can be retrieved by
running above command.

A Service in Kubernetes is an abstraction which defines a logical set of Pods and
a policy by which to access them. Services enable a loose coupling between
dependent Pods.A Service routes traffic across a set of Pods. Services are the
abstraction that allow pods to die and replicate in Kubernetes without impacting
your application. Discovery and routing among dependent Pods (such as the
frontend and backend components in an application) is handled by Kubernetes
Services.

Step #6 : Delete app
To delete the app,run delete deployment command

kubectl delete deployment my-nginx

In the next tutorial,we will learn how to scale & perform updates to the app on
the cluster.

Kubernetes Quick Start Guide

 www.upnxtblog.com

22

Scale & perform updates to the app on the
cluster
We have looked at how to create local cluster,deploy an app and check the status
of the deployments.In continuation to the series,in this post we are going to
check how to scale & perform updates to applications running
on Kubernetes cluster.

Step #1. Check the list of application deployment
If you can remember, in the last post we have deployed our nginx application
using runcommand.So lets check the list of application deployments using get
deploymentscommand.

Run command would have created only one Pod for running our application. But
in the real life scenario,when traffic increases, we will need to scale the
application to keep up with user demand. Running multiple instances of an
application will require a way to distribute the traffic to all of them. Services have
an integrated load-balancer that will distribute network traffic to all Pods of an
exposed Deployment. Services will monitor continuously the running Pods using
endpoints, to ensure the traffic is sent only to available Pods.

Image – kubectl get deployment command

To list your deployments use the get deployments command:

We should have 1 Pod. If not, run the command again. This shows:

 The DESIRED state is showing the configured number of replicas

Kubernetes Quick Start Guide

 www.upnxtblog.com

23

 The CURRENT state show how many replicas are running now

 The UP-TO-DATE is the number of replicas that were updated to match the
desired (configured) state

 The AVAILABLE state shows how many replicas are actually AVAILABLE to the
users

Step #2. Scale up/down application deployment
Now let’s scale the Deployment to 4 replicas. We are going to use the kubectl
scalecommand, followed by the deployment type, name and desired number of
instances:

Image – kubectl scale deployment command

The change was applied, and we have 4 instances of the application available.
Next, let’s check if the number of Pods changed:

Image – kubectl get deployments command

Now There should be 4 pods running in the cluster

Image – kubectl get pods command

Kubernetes Quick Start Guide

 www.upnxtblog.com

24

There are 4 Pods now, with different IP addresses. The change was registered in
the Deployment events log. To check that, use the describe command:

Image – kubectl describe command

You can also view in the output of this command that there are 4 replicas now.

To scale down the Service to 2 replicas, run again the scale command:

Image – kubectl scale command

Step #3. Perform rolling updates to application
deployment
If you have multiple instances of an Application running, there could be scenarios
where old instances can clash with the new instances and if you shutdown the

Kubernetes Quick Start Guide

 www.upnxtblog.com

25

cluster for updates,downtime could never be not acceptable.Users expect
applications to be available all the time and developers are expected to deploy
new versions of them several times a day.

In Kubernetes this is done with rolling updates. Rolling updates allow
Deployments update to take place with zero downtime by incrementally updating
Pods instances with new ones. The new Pods will be scheduled on Nodes with
available resources.

Rolling updates allow the following actions:

 Promote an application from one environment to another (via container
image updates)

 Rollback to previous versions

 Continuous Integration and Continuous Delivery of applications with zero
downtime

To view the current image version of the app, run a describe command against
the Pods (look at the Image field):

Kubernetes Quick Start Guide

 www.upnxtblog.com

26

Image – kubectl describe command

To update the image of the application to new version, use the set
image command, followed by the deployment name and the new image version:

Image – kubectl set image command

Kubernetes Quick Start Guide

 www.upnxtblog.com

27

Image – kubectl describe pods command

The command notified the Deployment to use a different image for your app and
initiated a rolling update. Check the status of the new Pods, and view the old one
terminating with the get pods command:

Step #4. Rollback updates to application
deployment
Suppose if you want to roll out the updates we made, We’ll use the rollout
undocommand:

Image – kubectl rollout undo command

The rollout command reverted the deployment to the previous known state.
Updates are versioned and you can revert to any previously know state of a
Deployment. List again the Pods:

Kubernetes Quick Start Guide

 www.upnxtblog.com

28

After the rollout succeeds, you may want to get the Deployment.

Step #5. Cleanup
Finally you can clean up the resources you created in your cluster:

kubectl delete service my-nginx
kubectl delete deployment my-nginx

Kubernetes Quick Start Guide

 www.upnxtblog.com

29

Create application deployment using yaml file
In the last post, we have learnt how to create & deploy the app to the Kubernetes
cluster.Now in this post,we are going to learn how to create application
deployment using yaml file also we can check on how to create services to control
how application communicates.

Step #1.Create an nginx deployment
Using Deployment controller we can provide declarative updates for Pods and
ReplicaSets. Create deployment.yaml file in your current folder like the below to
describe the nginx deployment.

Kubernetes manifest file defines a desired state for the cluster, including what
container images should be running.For example, this YAML file describes a
Deployment that runs the nginx:latest Docker image

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80

Kubernetes Quick Start Guide

 www.upnxtblog.com

30

In this example:

 A Deployment named nginx-deployment is created, indicated by the
metadata: name field.

 The Deployment creates 1 replicated Pods, indicated by the replicas field.

 The Pod template’s specification, or template: spec field, indicates that the
Pods run one container, nginx, which runs the nginx Docker Hub latest image
(you can also specify the version ex.1.7.9.)

 The Deployment opens port 80 for use by the Pods.

Step #2.Create Deployment based on the YAML
file
 Based on the deployment described in deployment.yaml created in the

previous step,create the deployment using kubectl create command

kubectl create -f deployment.yaml

Image – Kubectl – Create deployment command

 Now that deployment is created,lets check the deployment information
using kubectl get deployment command :

Image – Kubectl – get deployment command

Kubernetes Quick Start Guide

 www.upnxtblog.com

31

When you inspect the Deployments in your cluster, the following fields are
displayed:

o NAME lists the names of the Deployments in the cluster.

o DESIRED displays the desired number of replicas of the application, which you
define when you create the Deployment. This is the desired state.

o CURRENT displays how many replicas are currently running.

o UP-TO-DATE displays the number of replicas that have been updated to
achieve the desired state.

o AVAILABLE displays how many replicas of the application are available to your
users.

o AGE displays the amount of time that the application has been running.

 Describe the deployment using kubectl describe deployment command to
check the details on the deployment

Image- Kubectl – describe deployment command

 Check the list of pods created by the deployment by using kubectl get
podscommand:

Image – Kubectl – get pods command

Kubernetes Quick Start Guide

 www.upnxtblog.com

32

Step #3.Create service
Kubernetes has powerful networking capabilities that control how applications
communicate. These networking configurations can also be controlled via
YAML.The Service selects all applications with the label ngnix. As multiple
replicas, or instances, are deployed, they will be automatically load balanced
based on this common label. The Service makes the application available via a
NodePort.

Kubernetes Service is an abstraction which defines a logical set of Pods and a
policy by which to access them (micro-service). The set of Pods targeted by
a Service is determined by a Label Selector

apiVersion: v1
kind: Service
metadata:
 name: nginx-svc
 labels:
 app: nginx
spec:
 type: NodePort
 ports:
 - port: 80
 nodePort: 30080
 selector:
 app: nginx

Step #4.Deploy service
 Use kubectl create command to create new service based on the service.yaml

file created in the previous step

 Check the details of all the Service objects deployed

Kubernetes Quick Start Guide

 www.upnxtblog.com

33

Image – Kubectl – get Svc command command

 Use describe command to discover more details about the configuration of
all the Service objects deployed

Image – Kubectl –
describe svc command command

Use curl command to Issuing requests to the port 30080

Image – curl command to issue request

Kubernetes Quick Start Guide

 www.upnxtblog.com

34

Step #5.Update nginx deployment to have 4
replicas
Modify deployment.yaml to update the nginx deployment to have 4 replicas.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80

Step #6.Apply the updated nginx deployment to
have 4 replicas
Apply the changes using kubectl apply command

kubectl apply -f deployment.yaml

 Now that deployment is created,lets check the deployment information
using kubectl get deployment command :

Kubernetes Quick Start Guide

 www.upnxtblog.com

35

Image – Kubectl – get deployment command

When you inspect the Deployments in your cluster, the following fields are
displayed:

 NAME lists the names of the Deployments in the cluster.

 DESIRED displays the desired number of replicas of the application, which
you define when you create the Deployment. This is the desired state.

 CURRENT displays how many replicas are currently running.

 UP-TO-DATE displays the number of replicas that have been updated to
achieve the desired state.

 AVAILABLE displays how many replicas of the application are available to
your users.

 AGE displays the amount of time that the application has been running.

 Describe the deployment using kubectl describe deployment command to
check the details on the deployment

Image – Kubectl – describe deployment command

 Check the list of pods created by the deployment by using kubectl get
podscommand:

Kubernetes Quick Start Guide

 www.upnxtblog.com

36

Image – Kubectl – get Pods command

As all the Pods have the same label selector, they’ll be load balanced behind
the Service NodePort deployed. Issuing requests to the port will result in
different containers processing the request

Kubernetes Quick Start Guide

 www.upnxtblog.com

37

Running Kubernetes on Microsoft Azure
Azure Container Service (AKS) is managed Kubernetes offering from Azure.As a
hosted Kubernetes service, Azure handles all heavy lifting of all the complexity,
operational overhead of managing a Kubernetes cluster for you.

As a managed Kubernetes service, AKS provides:

 Automated Kubernetes version upgrades and patching

 Easy cluster scaling

 Self-healing hosted control plane (masters)

 Cost savings – pay only for running agent pool nodes

In short, AKS would provide a container hosting environment by using open-
source tools and technologies. To this end, standard Kubernetes API standard
endpoints are exposed and you can leverage any software that is capable of
talking to a Kubernetes cluster.Like for example,kubectl

Now we can see how to create simple cluster using AKS.This quickstart assumes
a basic understanding of Kubernetes concepts, please refer earlier posts for
understanding on Kubernetes & how to create,deploy & rollout updates to the
cluster.

Step#1.Launch Azure Cloud Shell

Once you login to Azure Portal,on the upper right corner,there is an option to
Azure Cloud Shell.Azure Cloud Shell is a free Bash shell has the Azure CLI
preinstalled and configured to use with your account.

Image – Launch Azure Cloud Shell

Kubernetes Quick Start Guide

 www.upnxtblog.com

38

Image – Azure Portal

Step#2.Enable AKS Preview

From the Azure Shell,enable AKS preview by the below command.

Kubernetes Quick Start Guide

 www.upnxtblog.com

39

az provider register -n Microsoft.ContainerService

Image – Enable AKS P review

On the registrationState field you can see that its ‘Registering’,you can check the
status of the registration by following command.

az provider show -n Microsoft.ContainerService

Image – AKS Registration Successful

Once registration is complete, we are now ready to create a Kubernetes cluster
with AKS.

Step#3.Resource group creation

Before we create the cluster & nodes,we would need to create Azure resource
group which is nothing but a logical group in which Azure resources are deployed
and managed.

Create new resource using below command.

az group create --name k8SResourceGroup --location westus2

Kubernetes Quick Start Guide

 www.upnxtblog.com

40

Image – Azure create new resource group command

Before proceeding to the next step,check the provisioningState on the ouput.It
should be “Succeeded”

Step#4.Kubernetes cluster creation

Creates a sample cluster named myK8sCluster with one node.

az aks create --resource-group k8SResourceGroup --name myK8sCluster --node-count
1 --generate-ssh-keys

Image – Azure create cluster

Above command would take sometime to create the cluster, once the command
completes and returns JSON-formatted information about the cluster.

Image – JSON-formatted output about the cluster

Kubernetes Quick Start Guide

 www.upnxtblog.com

41

Image – JSON-formatted output about the cluster

Step#5.Connect to Kubernetes cluster

For us to connect, manage Kubernetes cluster, we are going to use kubectl, the
Kubernetes command-line client.Azure cloud shell has already built-in kubectl so
we don’t have to install them separately.

To configure kubectl to connect to our Kubernetes cluster, run the following
command. This step downloads credentials and configures the Kubernetes CLI to
use them.

az aks get-credentials --resource-group k8SResourceGroup --name myK8sCluster

Image – Connect to Kubernetes cluster

To verify kubectl configuration, check the version of kubectl

Image – kubectl version

Kubernetes Quick Start Guide

 www.upnxtblog.com

42

Step#6. Deploy new application on the cluster

Now we are going to create new Kubernetes manifest file that defines a desired
state for the cluster, including what container images should be running etc.,

Create file named Deployment.yml,you can use vi editor to create this file.

Image – Deployment manifest file

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 1
 template:

Kubernetes Quick Start Guide

 www.upnxtblog.com

43

 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - containerPort: 80

Use the kubectl create command to deploy the application.

Image – Create new Deployment

In this example:

 A Deployment named nginx-deployment is created, indicated by the
metadata: name field.

 The Deployment creates 1 replicated Pods, indicated by the replicas field.

 The Pod template’s specification, or template: spec field, indicates that the
Pods run one container, nginx, which runs the nginx Docker Hub latest image
(you can also specify the version ex.1.7.9.)

 The Deployment opens port 80 for use by the Pods.

Now that deployment is created,lets check the deployment information
using kubectl get deployment command :

Image – kubectl get deployment command

Kubernetes Quick Start Guide

 www.upnxtblog.com

44

When you inspect the Deployments in your cluster, the following fields are
displayed:

 NAME lists the names of the Deployments in the cluster.

 DESIRED displays the desired number of replicas of the application, which you
define when you create the Deployment. This is the desired state.

 CURRENT displays how many replicas are currently running.

 UP-TO-DATE displays the number of replicas that have been updated to
achieve the desired state.

 AVAILABLE displays how many replicas of the application are available to your
users.

 AGE displays the amount of time that the application has been running.

Describe the deployment using kubectl describe deployment command to check
the details on the deployment.

Image – kubectl describe deployment command

Step#7. Create service

Kubernetes Service is an abstraction which defines a logical set of Pods and a
policy by which to access them (micro-service). The set of Pods targeted by
a Service is determined by a Label Selector

Kubernetes Quick Start Guide

 www.upnxtblog.com

45

Kubernetes has powerful networking capabilities that control how applications
communicate. These networking configurations can also be controlled via
YAML.The Service selects all applications with the label ngnix. As multiple
replicas, or instances, are deployed, they will be automatically load balanced
based on this common label. The Service makes the application available via a
NodePort.

Create new file named svc.yml to define load balancers & apps.

Image – Service Yaml
file

apiVersion: v1
kind: Service
metadata:
 name: nginx-svc
 labels:
 app: nginx
spec:
 type: LoadBalancer
 ports:
 - port: 80

Kubernetes Quick Start Guide

 www.upnxtblog.com

46

 selector:
 app: nginx

Use kubectl create command to create new service based on the svc.yaml file
created in the previous step.

Image – Create new service

Once the External-IP is available,we can browse the ngnix page.

Image – Once External IP is assigned we can browse ngnix page

Kubernetes Quick Start Guide

 www.upnxtblog.com

47

Image – ngnix landing page

Step#8. Clean up

Finally now its time to clean up the resources what we have created:

kubectl delete service my-nginx
kubectl delete deployment my-nginx

Image – kubectl detele service command

Image – kubectl detele deployment command

Kubernetes Quick Start Guide

 www.upnxtblog.com

48

Kubless – Kubernetes Native Serverless
Framework

kubeless is a Kubernetes-native serverless framework that lets you deploy small
bits of code without having to worry about the underlying infrastructure
plumbing. It leverages Kubernetes resources to provide auto-scaling, API routing,
monitoring, troubleshooting and more.

Image –
Kubeless – Kubernetes-native serverless framework

Before we move on to tutorial, First – little bit of intro on Serverless,it allows
developers to build and run applications and services without thinking about the
servers actually running the code. Serverless services, or FaaS (Functions-as-a-
Service) providers, instrument this concept by allowing developers to upload the
code while taking care of deploying running and scaling it. AWS Lambda was the
first one in the market to offer this kind.

Popular cloud providers that supports Function As A Service (FaaS) as follows:

 AWS via Lamdba Service

 Azure via Azure Functions

 Google via Google Cloud Functions

Kubeless aims to be an open source FaaS solution to clone the functionalities of
AWS Lamdba/Google Cloud Functions.

For more details on Serverless & comparison, look up here.

Kubernetes Quick Start Guide

 www.upnxtblog.com

49

How it works
Serverless services or FaaS lets you run code without provisioning or managing
servers (but still servers are needed). You pay only for the compute time you
consume there is no charge when your code is not running. You can run code for
virtually any type of application or backend service all with zero administration.
Just upload your code and FaaS provider would take care of everything required
to run and scale your code with high availability. You can set up your code to
automatically trigger from other services or call it directly from any web or mobile
app.

Image – AWS Lambda / How it works

Image- Another Sample

Kubernetes Quick Start Guide

 www.upnxtblog.com

50

With Kubeless you can deploy functions without the need to build containers.
These functions can be called via regular HTTP(S) calls or triggered by events
submitted to message brokers like Kafka.

Currently Kubeless Functions have three possible types:

 HTTP triggered (function will expose an HTTP endpoint)

 Pubsub triggered (function will consume event on a specific topic; a running
kafka cluster on your k8s is required)

 Schedule triggered (function will be called on a cron schedule)

Kubeless Installation
Step #1 : Create a kubeless namespace where you will install the controller.

Image – Create Kubeless namespace

Step #2 : Install the latest stable version with a kubectl create command

curl -sL https://github.com/kubeless/kubeless/releases/download/v0.3.0/kubeless-
rbac-v0.3.0.yaml | kubectl create -f -

Kubernetes Quick Start Guide

 www.upnxtblog.com

51

Image – Install Kubeless

You can see that few pods are being started in the kubeless namespace. Also if
you can see that a few pods are being started in the kubeless namespace. The
controller which will watch for function objects to be created and also two Pods
to enabled PubSub function (Kafka & Zoo pods).

Step #3 : Check the status of the pods using get pods command

Image – check deployment status using get pods command

Once the controller is in ‘Running’ state,we can start deploying functions.

Deploy Function
To deploy a function, we are going use the kubeless CLI. For the function that we
are going to deploy,we have to specify a run time which language the function is
in.

Kubernetes Quick Start Guide

 www.upnxtblog.com

52

Also we need to specify the file that contains the function, how the function will
get triggered (here we are using an HTTP trigger) and finally specify the function
name as a handler.

kubeless function deploy toy --runtime python2.7 --handler toy.handler --from-file
toy.py --trigger-http

Image – Deploy kubeless function

Congrats! Now we have create new function.

We can check the list of functions with the kubeless CLI:

kubeless function ls

Image – kubeless function ls command

Kubeless would have automatically created a Kubernetes deployment and
service. You can check that a Pod containing your function is running:

Kubernetes Quick Start Guide

 www.upnxtblog.com

53

Image – kubectl get pods command

Call Function via HTTP
To test the function, call the function using the kubeless CLI command:

Image – Call kubeless function from CLI

If proxy is configured,we can call it using curl command

curl --data '{"hello":"world"}'
localhost:8080/api/v1/proxy/namespaces/default/services/toy:8080/ --header
"Content-Type:application/json"

Image – Call function using curl command

For viewing the logs of the function,use logs command

kubeless function logs toy

Kubernetes Quick Start Guide

 www.upnxtblog.com

54

Image – View Function logs

To get the description of the function,use describe command like below

kubeless function describe toy

Image – Describe command to get details of function

Kubernetes Quick Start Guide

 www.upnxtblog.com

55

To update a function use the kubeless function updatecommand. For example to
replace the toy function which we have created with the method from the toy-
udpate.py script, do:

kubeless function update toy --from-file toy-update.py

As clean up activity,we can also remove the functions,deployments we have
created.

kubeless function delete toy

Image – Delete command

The deployment and Kubernetes services will be removed automatically.You can
use get deployments,services to check the same.

Kubernetes Quick Start Guide

 www.upnxtblog.com

56

Resources

1. Kubectl cheat sheet

2. Official documentation as a reference to understand any command.

3. Take a free course on Scalable Microservices with Kubernetes.

4. If you’re looking for Kubernetes examples,here it is GitHub

5. Azure CLI commands

6. Serverless Architectures

